Python tutorial
Sponsor Open Source development activities and free contents for everyone.
Kiitos.
– k Hong
 OpenCV 3 Pythonilla 
Image – OpenCV BGR : Matplotlib RGB 
Basic image operations-pixel access 
iPython-signaalinkäsittely numpy I – FFT: llä 
signaalinkäsittely numpy I-FFT: llä ja DFT: llä Sinille, neliöaalloille, unitpulselle ja satunnaissignaalille 
signaalinkäsittely NumPy II-Image Fourier-muunnoksella : FFT & DFT 
Kuvan Käänteinen Fourier-muunnos alipäästösuodattimella: cv2.idft () 
Image Histogram 
Video Capture and Switching colourspaces-RGB / HSV 
Adaptive Thresholding-Otsu ’ s clustering-based image thresholding 
Edge Detection-Sobel and Laplacian ytimet 
Canny Edge Detection 
Hough Transform-Circles 
vedenjakaja algoritmi: Marker-based Segmentation I 
Image noise reduction: Non-local Means denoising algorithm 
Image object detection : Kasvojentunnistus Haar – Kaskadiluokittajien avulla 
Image segmentation – Foreign extraction Grabcut algorithm based on graph cuts 
Image Reconstruction – Inpainting (Interpolation) – Fast Marching Methods 
Video : Mean shift object tracking 
Machine Learning : Clustering-K – Means clustering I 
Machine Learning : Clustering-K – Means clustering II 
Machine Learning : Classification-k-nearest neighbors (k-nn) algorithm 
Machine Learning with scikit-learn
scikit-learn installation 
scikit-learn : Features and feature extraction – iris dataset 
scikit-learn : Machine Learning Quick Preview 
scikit-learn : Data Preprocessing I – Missing / Categorical data 
scikit-learn : Data Preprocessing II – Partitioning a dataset / Feature scaling / Feature Selection / Regularisation 
scikit-learn : Data Preprocessing III – Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests 
Data Compression via Dimensionality Reduction I – Principal component analysis (PCA) 
skikit-Opi : Data Compression via Dimensionality Reduction II – Linear Discriminant Analysis (Lda) 
scikit-learn : Data Compression via Dimensionality Reduction III – Nonlinear mappings via kernel principal component (KPCA) analysis 
scikit-learn : Logistic Regression, Overfitting & regularisation 
scikit-learn : valvottu oppiminen & valvomaton oppiminen – esim. valvomaton PCA-mitoituksen vähentäminen Iris – tietokokonaisuudella 
scikit-learn : valvomaton_learning-kmeans clustering Iris-tietokokonaisuudella 
scikit-learn : Lineaarisesti erotettava Data – lineaarinen malli & (Gaussin) radial basis function kernel (RBF kernel) 
scikit-learn : Decision Tree Learning I – Entropy, Gini, and Information Gain 
scikit-learn : Decision Tree Learning II – Construction the Decision Tree 
scikit-learn : Random Decision Forests Classification 
scikit-learn : Support Vector Machines (SVM) 
scikit-learn : Support Vector Machines (SVM) II 
flask with embedded machine learning I : serializing with pickle and db setup 
flask with embedded Machine Learning II : Basic Flask App 
Flask with Embedded Machine Learning III : Embedding Classifier 
Flask with Embedded Machine Learning IV : Deploy 
Flask with Embedded Machine Learning V : luokittelijan päivittäminen 
scikit-Opi : Näyte roskapostisuodattimesta käyttäen SVM-luokittelua hyvä tai huono 
Koneoppimisalgoritmeja ja-käsitteitä
 Eräoppimisalgoritmi 
yksikerroksinen neuroverkko-Perceptron-malli Iris-tietokokonaisuudessa käyttäen Heaviside step activation-funktiota 
yksikerroksinen neuroverkko – Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method 
yksikerroksinen neuroverkko-Adaptive Linear Neuron using linear (identity) activation with batch gradient descent method : Adaptive Linear Neuron using linear (identity) activation function with stokastic gradient descent (SGD) 
Logistic Regression 
VC (Vapnik-Chervonenkis) Dimension and Shatter 
Bias-variance tradeoff 
Maximum likability Estimation (MLE) 
Neural Networks with backropagation for XOR using one hidden layer 
minHash 
TF-idf weight 
Natural Language Processing (NLP): Sentimental Analysis I (IMDb & bag-of-Words) 
Natural Language Processing (NLP): Sentimental Analysis II (tokenization, stemming, and stop words) 
Natural Language Processing (NLP): Tunteanalyysi III (koulutus & cross validation) 
Natural Language Processing (NLP): Tunteanalyysi IV (Out-of-core) 
local-Sensitive Hashing (LSH) using Kosine Distance (Cosine Similarity) 
Artificial Neural Networks (ANN)
 Sources are available at Github – Jupyter notebook files 
1. Johdanto 
2. Eteenpäin etenevä 
3. Gradient Descent 
4. Virheiden repropagaatio 
5. Tarkistetaan gradientti 
6. Training via bfgs 
7. Overfitting & Regularisation 
8. Syväoppiminen I : Kuvantunnistus (kuvan lataaminen) 
9. Deep Learning II: Image Recognition (Image classification) 
10-Deep Learning III: Deep Learning III : Theano, TensorFlow ja Keras